A Simply Stabilized
Running Model*

R. M. Ghigliazza†
R. Altendorfer‡
P. Holmes§
D. Koditschek¶

Abstract. The spring-loaded inverted pendulum (SLIP), or monopedal hopper, is an archetypal model for running in numerous animal species. Although locomotion is generally considered a complex task requiring sophisticated control strategies to account for coordination and stability, we show that stable gaits can be found in the SLIP with both linear and “air” springs, controlled by a simple fixed-leg reset policy. We first derive touchdown-to-touchdown Poincaré maps under the common assumption of negligible gravitational effects during the stance phase. We subsequently include and assess these effects and briefly consider coupling to pitching motions. We investigate the domains of attraction of symmetric periodic gaits and bifurcations from the branches of stable gaits in terms of nondimensional parameters.

Key words. legged locomotion, spring-loaded inverted pendulum, periodic gaits, bifurcation, stability

AMS subject classifications. 34C23, 37J20, 37J25, 37J60, 70H, 70K42, 70K50

DOI. 10.1137/050626594

1. Introduction. Locomotion, “moving the body’s locus,” is among the most fundamental of animal behaviors [1]. A large motor science literature addresses gait pattern selection [2], energy expenditure [3], underlying neurophysiology [4], and coordination in animals and machines [5]. In this paper, we explore the stabilizing effect of a very simple control policy on a very simple running model.

Legged locomotion is generally considered a complex task [6] involving the coordination of many limbs and redundant degrees of freedom [7]. In [8], Full and Koditschek note that “locomotion results from complex, high-dimensional, non-linear, dynamically coupled interactions between an organism and its environment.” They distinguish locomotion models simplified for the purpose of task specification (templates)...

*Published electronically July 29, 2005. This paper originally appeared in SIAM Journal on Applied Dynamical Systems, Volume 2, Number 2, 2003, pages 187–218. The current version has been revised and updated, and this and the original work were supported by DoE grant DE-FG02-95ER25238, DARPA/ONR grant N00014-98-1-0747, and NSF grant EF-0425878.
http://www.siam.org/journals/sirev/47-3/62659.html
†Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544 (rghiglia@princeton.edu). This author was partially supported by a Burroughs-Wellcome Training Grant in Biological Dynamics 1001782.
‡Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109 (altendor@onlinehome.de).
§Department of Mechanical and Aerospace Engineering, Program in Applied and Computational Mathematics, Princeton University, Princeton, NJ 08544 (pholmes@math.princeton.edu).
¶Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104 (kod@ese.upenn.edu).
from more kinematically and dynamically accurate representations of the true body morphology (anchors). A template is a formal reductive model that (1) encodes parsimoniously the dynamics of the body and its payload transport capability, using the minimum number of variables and parameters, and (2) advances an intrinsic hypothesis concerning the control strategy underlying the achievement of this task. Anchors are not only more elaborate dynamical systems grounded in the morphology and physiology of an animal, but they also must admit the imposition of control policies that result in the realization of the lower-dimensional template dynamics. In this context, Full and Koditschek suggest that the spring-loaded inverted pendulum (SLIP) model might reasonably provide a template for sagittal plane motions of the center of mass (COM) of such diverse species as six-legged trotters (cockroaches), four-legged trotters (dogs), two-legged runners (humans and birds), and hoppers (kangaroos). The validation of the SLIP template is based on similarities of ground reaction forces and kinetic and potential energies between these animals running at steady state and the SLIP model with suitably adjusted parameters (see [9]; for a review, see [10]). Details of the anchor system such as pitching motion or multiple leg impacts lead to small deviations from the SLIP predictions, which can be quantified by a more detailed error analysis (see [11] and the references therein).

In related work, McGeer [12] and, more recently, Ruina and colleagues [13, 14, 15] have designed, analyzed, and built “passive-dynamic” walking machines that are entirely uncontrolled yet produce stable gaits. These differ from SLIP-type machines in that their rigid legs incur impacts at touchdown, and stable gaits emerge from a balance between energy supplied by motion down an inclined plane and energy losses due to impacts. (Powered adaptations of these machines, capable of walking on level ground, have recently been built [16].) Their mathematical models are significantly more complicated than the SLIP, and only limited analyses are possible. Similarly, a recent study of Mombaur et al. [17] relies on numerical optimization methods to find the “most stable” periodic gaits of a four-degree-of-freedom hopper endowed with a massy leg and a circular foot. They apply feedforward actuation via programmable leg length and hip torque and note that damper forces and impact losses “may promote stability.” In contrast, the SLIP machines investigated in this paper are conservative and operate at constant energy; no friction forces are present, and no impact occurs at touchdown (see section 2 for details of the model).

Models as simple and (relatively) analytically tractable as the SLIP can address two key questions: How much energy and how much information are needed to sustain a gait? With regard to the second question, many researchers (e.g., [5, 18, 7]) implicitly assume that even if passive dynamic periodic gaits exist, they are (highly [5]) unstable. A surprising answer to both questions, motivated by hypotheses proposed in [19], was found by Schmitt and Holmes [20, 21, 22, 23] for the mechanics of a lateral leg spring (LLS) model (essentially a SLIP without gravity or flight phases), which describes horizontal plane motions of a rigid body equipped with a pair of massless springy legs that are lifted when leg force drops to zero, are swung forward, and are set down at fixed angles relative to the body. They showed that, even without energy dissipation, the LLS model can exhibit stable periodic gaits. Liftoff events alone trigger the swing phases: continuous (neural) sensing is not required, and stability derives from angular momentum trading from step to step. Moreover, recent experiments [24] have suggested that rapidly running insects do employ such mechanical reaction forces to make heading corrections.

In this paper, we demonstrate and, under simplifying assumptions, prove that stable periodic gaits exist in very simply controlled SLIP models over a physically
relevant range of parameter values. Specifically, we show that a liftoff-event-triggered reset of the leg angle during flight to achieve a touchdown angle fixed at the same value for each stance phase (hereafter, fixed-leg reset) suffices for stability. Such self-stabilized SLIP gaits have already appeared in the literature [11, Figure 2], where periodic SLIP trajectories were compared to experimental data, although their stability properties were not discussed. Our present work also complements a recent paper of Seyfarth et al. [25], in which parameter ranges for stable, symmetric, periodic SLIP gaits are found by numerical simulation and are compared with data from human running. Here we derive analytical results, perform detailed bifurcation and parameter studies (including a second, nonlinear spring model), explain mechanisms responsible for stable gaits, and elucidate limits to fixed-leg reset stability. We relate our results to [25] where appropriate and summarize the relationship between that and the present work in section 5. (Since the first version of the present paper appeared, Geyer, Seyfarth, and Blickhan have also carried out analytical studies by linearizing about the midstance compressed state [26]. We comment further on this in our conclusions.)

Specifically, using conservation laws and simple geometric relations, we produce closed form approximations (explicit up to the evaluation of a quadrature integral) for the touchdown-to-touchdown Poincaré map and the “stability eigenvalue” of its fixed point for a simplified version of the model; see (2.20), (2.24), and Figures 7 and 11. These allow us to plot branches of stable and unstable periodic gaits (Figures 8 and 13) and to understand how the domains of attraction of the stable gaits depend upon parameters. Particular spring laws appear only in the quadrature. We believe that such explicit approximations have not previously appeared; moreover, exact Poincaré maps, requiring only numerical evaluation of the leg sweep angle during stance, are implicit in our derivation. An appropriate notion of stability for such piecewise-holonomic systems [27] is that of partial asymptotic stability. Due to energy conservation and rotational invariance (in the case of coincident “hip joint” and mass center), one or three of the eigenvalues of the linearized Poincaré map are necessarily unity, leaving a single stability eigenvalue that may lie within or outside the unit circle. Thus, at best, the orbits are only Liapunov or neutrally stable. We also find that domains of attraction may be small, especially at high speeds.

The paper is organized as follows. In section 2, we set up the general rigid body model and then focus on an integrable case, in which pitching motions decouple and gravity is neglected during the stance phase (2.1). This allows us to derive explicit stride-to-stride (Poincaré) maps and obtain expressions characterizing periodic gaits, their stability, and bifurcations. Apart from illustrations, this is all done for general leg-spring laws. We then give convincing numerical evidence that stable gaits persist under the inclusion of gravity during stance (2.2) and under coupling to pitching motions (2.3). In section 3, we illustrate our results using the classical Hooke’s law spring (3.1) and a progressively hardening compressed air spring (3.2). In section 4, we reformulate the equations of motion in nondimensional variables and include gravity during stance, thereby clarifying the effects of parameter variations and the resulting range of behaviors exhibited by the model. Finally, section 5 summarizes the work and notes possible extensions.

Our work has two main goals: to better understand animal locomotion and to stimulate and enable the creation of “bio-inspired” robots. The former is the subject of an extensive survey paper [28] (currently in press for this journal), to which we refer the interested reader. With regard to the second goal, a significant part of robotics research is driven by the desire to exploit the advantages of legs as opposed
to wheels and tracks. Nature suggests, and engineers are increasingly concerned to
demonstrate, that legged robots can operate over a greater range of environmental
and surface conditions, combining dexterity with mobility and efficiency (cf. [11, 29]);
moreover, runners that use ballistic flight phases do not require continuous support
paths [6].

Legged machine designs have traditionally relied on cancellation of natural dy-
namics by the selection of effective limb reference motions or force balance princi-
pies [30]; indeed, a growing number of commercial entertainment-oriented humanoid
robots are controlled in this manner [31], much as the robot arms used in factory
assembly lines. A part of the biped control literature relaxes the assumption of a
“grounded” foot in favor of point contacts more suited to modeling locomotion on
unstructured terrain, so that arbitrary moments can no longer be supported and a
true dynamical analysis is required. In the best case, this leaves just one unactuated
degree of freedom, in which case walking [32] and running [33] gaits may be devel-
oped by using the actuators to anchor a specifically tuned single-degree-of-freedom
template. This yields an integrable stride map for which closed form gait stability
analysis is possible [32, 33].

Unfortunately, due to low power densities of current devices, completely actu-
ated machines seem unlikely to be agile or to bear much payload (beyond substantial
battery packs) for the foreseeable future. In contrast, an underactuated hexapedal
robot, RHex, whose design was inspired by rapidly running insects (primarily cock-
roaches) [29, 34], has already demonstrated remarkable agility and stability over rough
ground. RHex has a simple feedforward control system in which a single motor ac-
tuates each three-degree-of-freedom compliant leg, whose circulation tracks a pre-
programmed pattern, approximating the fixed-leg reset procedure assumed in this pa-
per. Moreover, empirical evidence [11] suggests that RHex’s mass center dynamics,
restricted to the sagittal plane, is essentially that of a SLIP, and simulations [35] sug-
gest that, even allowing body pitching and rolling, a suitably rich sensor suite can be
used to anchor a three-degree-of-freedom SLIP template. The present analysis of the
SLIP and modest generalizations of it should therefore be useful in developing nimble
legged robots.

The high cost, volume, and weight of sensors will limit their numbers as much
as those of actuators, so “low attention” controllers, requiring little or infrequent
sensing, are of considerable interest. A specific example and natural extension of
the present work is the design of control algorithms that enlarge the small basin of
attraction of the SLIP with fixed-leg reset [36]. A controller yielding global attraction
was proposed in [37, 38] by making the leg angle trajectory time-dependent during
flight, based on a numerically precomputed leg trajectory and using velocity sensing.
This raised the question of how much sensing is required to obtain “large” basins of
attraction. A first step in this direction was undertaken in [39], where an analytical
framework based on symmetric factorization of the return map was shown to yield a
necessary condition for the stability of fixed points for arbitrary leg angle trajectories.
That condition is formulated in terms of the sensor requirements at liftoff and serves
to indicate the sensory “cost of control.” A preliminary application of this theory
to a SLIP model for RHex appeared in a companion paper [40]. Control enters the
present paper only as the fixed feedforward leg placement strategy used at touchdown
to define the hybrid switching condition.

2. The Model: Equations of Motion. Figure 1(a) illustrates our parametrization
of the SLIP model as a schematic representation for the stance phase of a running
(or hopping) biped with at most one foot on the ground at any time. This model incorporates a rigid body of mass \(m \) and moment of inertia \(I \), possessing a massless sprung leg attached at a hip joint, \(H \), a distance \(d \) from the COM, \(G \). The figure depicts the attitude or pitch angle \(\theta \), the angle \(\psi \) formed between the line joining foothold \(O \) to the COM and the vertical (gravity) axis, and the distance \(\zeta \) from foothold to the COM. The quantity

\[
\eta = \sqrt{d^2 + \zeta^2 + 2d\zeta \cos(\psi + \theta)}
\]

measures the (compressed) leg-spring length: the distance between \(O \) and the hip pivot \(H \). We take frictionless pin joints at \(O \) and \(H \). The body is assumed to remain in the vertical (sagittal) plane, and its state at any point in time is defined by the position of \(G \), \((x_G, y_G)\) referred to a Cartesian inertial frame, and the pitch angle \(\theta \). During stance we will also use the generalized polar coordinates \(\zeta, \psi \), based at the foothold \(O \), and \(\theta \). (Note that \(\psi \) increases clockwise, while \(\theta \) increases counterclockwise.) Unlike many earlier studies of the SLIP, we consider a rigid body with distributed mass and allow pitching motions,\(^1\) although in the present paper we focus our attention upon the uncoupled case \(d = 0 \) and assume \(\theta \equiv 0 \), thus largely restricting ourselves to the point mass case.

A full stride divides into a stance phase, with foothold \(O \) fixed, the leg under compression, and the body swinging forward (\(\psi \) increasing); and a flight phase in which the body describes a ballistic trajectory under the sole influence of gravity. The stance phase ends when the spring unloads; the flight phase then begins, continuing until touchdown, which occurs when the landing leg, uncompressed and set at a predetermined angle \(\beta \), next contacts the ground. See Figure 1. This defines a hybrid system [42, 43] in which touchdown and liftoff conditions mark transitions between two dynamical regimes. In [39] the SLIP model was recast in this framework.

Recalling previous robotics research [44] and looking ahead to control studies [37, 38, 39, 40], \(\beta \) could be adjusted from stride to stride (necessitating at least intermittent active neural feedback), but here it will be taken as a fixed parameter. The “fixed leg reset angle” policy of stated interest might be implemented with respect either to the body or to the inertial frame. In the first case, touchdown occurs when the hip reaches the height \(\eta_0 \sin(\beta - \theta) \), and in the second case when the hip reaches the height

\(^1\)A bipedal walker with the above-described leg and body geometry with arbitrary radial force in the leg and arbitrary hip torque was considered in [41] in the context of feedback control. However, the investigation did not include gaits with flight phases.
\(\eta \sin \beta \). Liftoff occurs automatically when the spring force drops to zero, requiring no sensing, but in any physical implementation, even a fixed-leg reset policy requires some state information to initiate the swing phase (e.g., a contact sensor in the foot or force sensor in the spring).

The kinetic energy of the body is

\[
T = \frac{1}{2} m (\dot{\zeta}^2 + \dot{\psi}^2) + \frac{1}{2} I \dot{\theta}^2,
\]

and its potential energy is

\[
V_{\text{tot}} = mg \zeta \cos \psi + V(\eta(\zeta, \psi, \theta)),
\]

where \(V_{\text{spr}} \) denotes the spring potential. Forming the Lagrangian \(L = T - V \) and writing \(\partial V / \partial \eta = V_{\eta} \), we obtain the equations of motion for the stance phase:

\[
\ddot{\zeta} = \zeta \dot{\psi}^2 - g \cos \psi - \frac{V_{\eta}(\eta)}{m} (\zeta + d \cos (\psi + \theta)),
\]

\[
\dot{\psi} = -2 \dot{\zeta} \dot{\psi} + g \sin \psi + d \frac{V_{\eta}(\eta)}{m} (\sin (\psi + \theta)),
\]

\[
\dot{\theta} = d \frac{V_{\eta}(\eta)}{m} \sin (\psi + \theta).
\]

The equations of motion during the flight phase are simply the ballistic COM translation and torque-free rotation equations, which may be integrated to yield

\[
x_{G}(t) = x^{LO} + \dot{x}^{LO} t, \quad y_{G}(t) = y^{LO} + \dot{y}^{LO} t - \frac{1}{2} g t^2, \quad \theta(t) = \theta^{LO} + \dot{\theta}^{LO} t,
\]

where \((x_G, y_G)\) denotes the COM position and \(\theta \) the pitch angle, and the superscripts \(\text{LO} \) refer to the system state at liftoff.

2.1. The Case \(d = 0 \) Neglecting Gravitational Effects in Stance.

If the leg is attached at the COM \((H \equiv G)\), then \(d = 0, \zeta \equiv \eta \), the stance phase dynamics simplifies to the “classical” SLIP, and the pitching equation decouples:

\[
\ddot{\zeta} = \zeta \dot{\psi}^2 - g \cos \psi - \frac{V_{\zeta}(\zeta)}{m}, \quad \dot{\psi} = -2 \dot{\zeta} \dot{\psi} + g \sin \psi,
\]

\[
\dot{\theta} = 0 \Rightarrow \theta(t) = \theta(0) + \dot{\theta}(0) t.
\]

The third equation describes the conservation of angular momentum of the body about its COM: \(I \ddot{\theta} \triangleq \dot{\theta} = \text{const.} \)

Neglect of gravity in stance yields an integrable system [45]. A detailed analysis of the validity of this approximation for different spring potentials was performed in [46] using Hamiltonian instead of Lagrangian formalism. This simplification was shown to be too crude over a large range of running gaits, and several closed form approximations to the stance phase dynamics were proposed, although existence and stability of periodic solutions that can arise from concatenation of stance and flight phases were not investigated. Despite the limited accuracy of the gravity-free approximation, we adopt it here in order to gain an analytical understanding of periodic gaits. We will subsequently compare these results to numerical simulations of the full stance dynamics with gravity and show that analogous bifurcation structures persist in the physically more accurate model. We note that a recent analysis of Geyer, Seyfarth,
A SIMPLY STABILIZED RUNNING MODEL 525

and Blickhan [26] retains gravity and uses linearization about midstance (maximum compression) to derive an approximation that is more effective for small angles.

Neglecting gravity, the first two equations of (2.6) simplify to

\begin{equation}
\ddot{\zeta} = \zeta \dot{\psi}^2 - \frac{V_\zeta(\zeta)}{m}, \quad \zeta \ddot{\psi} = -2 \dot{\zeta} \dot{\psi}.
\end{equation}

The second of these equations expresses the conservation of the moment of linear momentum of the COM about the foot: \(m \dot{\psi} \dot{\zeta}^2 \Delta p_\psi = \text{const.} \). The first equation is, therefore, integrable:

\begin{equation}
\dot{\zeta} = \frac{p_\zeta^2}{m^2 \zeta^2} - \frac{V_\zeta(\zeta)}{m} \Rightarrow m \ddot{\zeta} = \frac{p_\zeta^2}{m^2 \zeta^2} \dot{\zeta} - V_\zeta(\zeta) \dot{\zeta} \Rightarrow
\end{equation}

\begin{equation}
H \triangleq \left(\frac{m \dot{\zeta}^2}{2} + \frac{p_\zeta^2}{2m \zeta^2} + V(\zeta) \right) = \text{const.}
\end{equation}

Indeed, in the absence of dissipative forces, the total energy, which coincides here with the Hamiltonian \(H = T + V = E \), is conserved. The original three degrees of freedom reduce to one due to the conservation of moment of linear momentum \(p_\psi \) and body angular momentum \(p_\theta \) individually. The phase portrait during stance is then given by the level sets of \(H \) in the region \(\zeta \leq \eta_0 \); Figure 2 illustrates this for a linear spring and also includes comparisons to solutions of the full system (2.6), including gravity. Three cases are shown, with different stiffness/gravity ratios characterized by the nondimensional parameter \(\gamma = \frac{km}{mg} \in [10, 100] \). As expected [48, 49], the integrable portraits are perturbed by the inclusion of gravity, but orbits retain the same qualitative characteristics. Leg stiffnesses estimated for human running, for example, give \(\gamma \in (10, 21) \) [50, 51] (although Seyfarth et al. propose significantly higher values \(\gamma \in (25, 70) \); cf. [25, Fig. 2A]). Errors approach 20% at the lower end of this range at midstance (near \(\dot{\zeta} = 0 \) in Figure 2(c)) but are smaller at liftoff. Extensive simulation experience confirms that errors decrease with increasing \(\gamma \) (or \(k \)) for initial conditions away from the extremes of the physically interesting operating regimes; see [46] for a careful discussion of such modeling errors; also see section 2.2 and Figure 4 below. Moreover, for orbits reflection-symmetric about midstance for which \(\psi(t) \) is an odd function, such as the periodic gaits to be found below, the net angular impulse delivered during each stance phase is zero so that, while \(p_\psi \) is not conserved, it does regain its touchdown value at liftoff. This also tends to minimize errors.

In principle, we can integrate (2.8), first solving for time in terms of \(\zeta \) and then inverting and solving for \(\zeta(t) \) and \(\psi(t) \). In particular, the quadrature determining the angle swept by the leg may be written as \(\Delta \psi(v_n, \delta_n) = \int_0^{\tau_n} \frac{p_\psi}{m \zeta^2} dt \), where \(v_n \) and \(\delta_n \) denote the COM velocity magnitude and direction relative to horizontal at the \(n \)th touchdown instant. Hence the moment of linear momentum for the \(n \)th stance phase may be computed as \(p_\psi = m \eta_0 v_n \sin(\beta - \delta_n) \). Then, from conservation of energy (2.8), we have

\begin{equation}
\dot{\zeta} = \sqrt{\frac{2}{m} (E - V(\zeta)) - \frac{p_\zeta^2}{m^2 \zeta^2}} \Rightarrow dt = \frac{m d\zeta}{\sqrt{2m (E - V(\zeta)) - \frac{p_\zeta^2}{\zeta^2}}}
\end{equation}

\begin{footnote}
The parameter \(\gamma \) was introduced in comparative locomotion studies in [47, 9].
\end{footnote}
so that the sweep angle may then be expressed as the quadrature

\[\Delta \psi (v_n, \delta_n) = 2 \int_{\zeta_b}^{\eta_0} \frac{\eta_0 v_n \sin(\beta - \delta_n)}{\zeta^2 \sqrt{v_n^2 - \frac{2V(\zeta)}{m} - \frac{\eta_0^2 v_n^2 \sin^2(\beta - \delta_n)}}} \ d\zeta. \]

Here we have set \(E = \frac{1}{2} m v_n^2 \), corresponding to the initial energy at touchdown, and \(\zeta_b \leq \eta_0 \) denotes the midstride (compressed) leg length.

Computations of \(\Delta \psi \) in specific cases of a linear spring and an “air spring” with potential \(V(\eta) = \frac{1}{2} k (\eta - \eta_0)^2 \) are given in [20]. Schwind and Koditschek [46] develop an approximate expression for this quadrature and compare it with both the exact integral and the analogous stance sweep angle including gravitational effects. In the present paper, we illustrate the general model again with a linear Hooke’s law spring but adopt a different version of the nonlinear air spring model—specifically, that used in [52, 46]. While this potential, \(V(\eta) = \frac{1}{2} k \eta^2 \), results in an inverse cubic force law of the form \(-k \eta^3\) that is nonzero at touchdown and liftoff, energy is conserved since the leg lengths are the same \((\eta = \eta_0)\), and velocities are continuous. The explicit sweep angle expression for this law is given in Appendix A of the original version of this paper (technical appendices are omitted in this version). For the linear spring, \(V(\zeta) = \frac{k}{2} (\eta - \eta_0)^2 = \frac{\tilde{k}}{2} (\zeta - \eta_0)^2 \), and we have \(\Delta \psi = (2 \sin(\beta - \delta)/\sqrt{\tilde{k}}) D(\tilde{k}; \beta - \delta) \), where \(\tilde{k} = \frac{k \eta_0^2}{m v_n^2} \) and the function \(D(\tilde{k}; \beta - \delta) \) involves elliptic integrals [20, Appendix A.1.2]. The quadrature for a different air spring model is also given in [20].

The stance phase dynamics described above must be composed with the ballistic dynamics of the flight phase of (2.5), and the overall dynamics and the stability of this piecewise-holonomic system [27] are best described via Poincaré or return maps [49]. It is convenient to choose as generalized coordinates to describe the map the magnitude of touchdown and liftoff velocities \(v_{TD}^n \) and \(v_{LO}^n \), respectively, and the relative angles
and δ_n^{TD} and δ_n^{LO} between the velocity vectors and the horizontal datum; see Figure 1(b).

The full map is obtained by composition of the stance phase map

$$P_{st} : \begin{bmatrix} v_n^{TD} \\ \delta_n^{TD} \end{bmatrix} \mapsto \begin{bmatrix} v_n^{LO} \\ \delta_n^{LO} \end{bmatrix} \tag{2.11}$$

and the flight map

$$P_{fl} : \begin{bmatrix} v_n^{LO} \\ \delta_n^{LO} \end{bmatrix} \mapsto \begin{bmatrix} v_{n+1}^{TD} \\ \delta_{n+1}^{TD} \end{bmatrix} \tag{2.12}$$

as

$$P = P_{fl} \circ P_{st} : \begin{bmatrix} v_n^{TD} \\ \delta_n^{TD} \end{bmatrix} \mapsto \begin{bmatrix} v_{n+1}^{TD} \\ \delta_{n+1}^{TD} \end{bmatrix}. \tag{2.13}$$

Since $I\dot{\theta} = I\dot{\theta}_0 = \text{const}$ implies that $\theta(t) = \theta_0 + \dot{\theta}_0 t$, and at touchdown in the first protocol the leg is placed at a fixed angle relative to the body, to obtain “sensible” periodic gaits we henceforth assume $\dot{\theta} = \dot{\theta}_0 = 0$. In this case, since $d = 0$ and $\theta \equiv 0$, there is no distinction between the two leg placement protocols.

We now describe the maps in detail, deriving explicit formulae. We shall frequently drop the superscript TD and write $v_n^{TD} = v_n$ and $\delta_n^{TD} = \delta_n$, it being understood that $(v_n, \delta_n) \mapsto P(v_n, \delta_n)$ denotes the touchdown-to-touchdown map.

2.1.1. Stance Phase Map.

The spring is fully extended and stores no potential energy at the beginning or the end of each stance phase. Choosing the reference height for zero gravitational energy at $y = \eta_0 \sin \beta$, the energy at touchdown is therefore purely kinetic, $E_n^{TD} = \frac{1}{2} m (v_n^{TD})^2$, while at liftoff the energy has in general a gravitational component, $E_n^{LO} = \frac{1}{2} m (v_n^{LO})^2 + mg\eta_0 (\sin (\beta + \Delta \psi) - \sin \beta)$, the last term being positive, zero, or negative. Appealing to overall energy conservation $E_n^{LO} = E_n^{TD}$, the liftoff velocity is therefore

$$v_n^{LO} = \sqrt{v_n^2 + 2g\eta_0 (\sin \beta - \sin (\beta + \Delta \psi))}. \tag{2.14}$$

As noted earlier, if the spring is sufficiently stiff so that gravity is negligible, the moment of linear momentum p_ψ is conserved throughout stance in what is effectively a central force problem [45]: $p_\psi = m (v_n \times \delta_n) = m (v_n^{LO} \times \delta_n^{LO})$. Since $|v_n \times \delta_n| = \eta_0 v_n \sin (\delta_n - \beta)$ and $|v_n^{LO} \times \delta_n^{LO}| = \eta_0 v_n^{LO} \sin (\delta_n^{LO} - \pi + \Delta \psi + \beta)$, we obtain

$$\delta_n^{LO} = \pi - \Delta \psi - \beta + \sin^{-1} \left(\frac{v_n}{v_n^{LO}} \sin (\delta_n - \beta) \right). \tag{2.15}$$

However, since gravity is ignored in the sweep angle computation of (2.10), for consistency we must also ignore it in assigning a liftoff velocity magnitude in (2.15) and set $v_n^{LO} = v_n$ so that (2.15) simplifies to

$$\delta_n^{LO} = \delta_n + \pi - \Delta \psi(v_n, \delta_n) - 2\beta, \tag{2.16}$$

as in the LLS computations of [20]. Thus the effects of gravity are included in computing liftoff velocity magnitude (2.14) but not in approximating liftoff velocity direction (2.16). This “mixed approximation” has the advantage of retaining global energy conservation. Equations (2.14)–(2.16), with (2.10), specify P_{st}. Note that (2.14), along
with a (numerical) calculation of the leg sweep angle $\Delta \psi$ and the change in p_ψ due to gravitational moment, defines the exact stance phase map including gravity. We use this in section 4.

We note that p_ψ is reset on each touchdown and that this “trading” of angular momentum from stride to stride will be responsible for asymptotic stability; cf. [20].

2.1.2. Flight Phase and Overall Poincaré Map \(P \).

Using similar arguments based on conservation of energy,

$$E_n^{LO} = \frac{1}{2} m(v_n^{LO})^2 + m g \eta_0 (\sin (\beta + \Delta \psi) - \sin (\beta)) = E_{n+1}^{TD} = \frac{1}{2} m(v_{n+1}^{TD})^2,$$

and on conservation of linear momentum in the horizontal direction,

$$v_n^{LO} \cos (\delta_n^{LO}) = v_{n+1}^{TD} \cos (\delta_{n+1}^{TD}),$$

we find the flight phase map. For convenience, both maps are specified here:

\[
\begin{aligned}
P_{st} \colon & \left[\begin{array}{c} v_n^{LO} \\ \delta_n^{LO} \end{array} \right] = \left[\begin{array}{c} \sqrt{v_n^2 + 2 g \eta_0 (\sin (\beta) - \sin (\beta + \Delta \psi))} \\ \delta_n + \pi - \Delta \psi - 2 \beta \end{array} \right], \\
P_{ft} \colon & \left[\begin{array}{c} v_{n+1} \\ \cos (\delta_{n+1}) \end{array} \right] = \left[\begin{array}{c} \sqrt{(v_n^{LO})^2 + 2 g \eta_0 (\sin (\beta + \Delta \psi) - \sin (\beta))} \\
\frac{v_n^{LO}}{v_n} \cos (\delta_n^{LO}) \end{array} \right].
\end{aligned}
\]

The last equation should more properly read $v_{n+1}^{TD} \cos (\delta_{n+1}^{TD}) = v_n^{LO} \cos (\delta_n^{LO})$, but provided β and η_0 remain constant, conservation of energy enforces, without approximations, that $v_{n+1} = v_n$ because the energy at the beginning and the end of each full stance + flight stride is entirely kinetic. The flight map is only implicitly defined, and it is not evident that one can find an expression in terms of v_n^{LO}, δ_n^{LO} above, especially because $\Delta \psi = \Delta \psi (v_n, \delta_n)$ is a complicated function of the touchdown conditions; see (2.10). Nonetheless, using $v_{n+1} = v_n$, the full map simplifies considerably:

\[
\begin{aligned}
P \colon & \left[\begin{array}{c} v_{n+1} \\ \cos (\delta_{n+1}) \end{array} \right] = \left[\begin{array}{c} v_n \\
\sqrt{1 - \frac{2 g \eta_0}{v_n^2} (\sin (\beta + \Delta \psi) - \sin (\beta)) \cos (\delta_n + \pi - \Delta \psi - 2 \beta)} \end{array} \right].
\end{aligned}
\]

This expression is explicit apart from the sweep angle $\Delta \psi (v_n, \delta_n)$, which must be computed from the quadrature of (2.10). Only here does the specific spring potential enter; the rest of the expression for P is derived purely from conservation laws and stance and flight path geometry. Note that, although we have approximated $\Delta \psi$ and hence P_{st} by neglecting the effect of gravitational torque in changing the COM angular momentum about the foot, the overall composed map P conserves energy, as would the exact solutions of (2.6).

We postpone quantitative analyses of specific spring potentials to sections 3–4; however, we note that analysis of special cases and numerical evidence indicates that for linear and stiffening springs, $\Delta \psi$ has a single maximum. This will suffice for the analysis of the present section. In particular, it is clear that for $\delta_n = \beta - \pi/2$ (glancing contact), $\tau = \Delta \psi = 0$, and for $\delta_n = \beta$ (running directly into the leg), $\Delta \psi = 0$. Thus $\Delta \psi = 0$ at both limits of the admissible δ range, while for any $v_n \neq 0$, $\Delta \psi > 0 \forall \delta_n \in (\beta - \pi/2, \beta)$, so there must be at least one maximum. We suspect that any physically reasonable spring law will give a $\Delta \psi$ with a unique maximum. The left column of Figure 3 shows $\Delta \psi$ for the linear spring evaluated numerically for several \bar{v}.

...
The first column shows the function $\Delta \psi$ computed for a linear spring with $k = 100, m = 1, \eta_0 = 1.5$, and $\beta = 1.25$. For cases (a) through (d), we set $\bar{v} = 1.75, 3.5, 5$, and 6, respectively. The conditions $\Delta \psi = \pi - 2\beta$ (dotted) and $\Delta \psi = \frac{\pi}{2} - \beta$ (dashed) are also shown. The second column shows the left-hand (dotted) and right-hand (solid) sides of inequality (2.26); see sections 2.1.4–2.1.5. The third column shows β and $\Delta \psi$ in physical space: solid lines indicate angles at touchdown (β) and liftoff ($\beta + \Delta \psi$). When $\beta + \Delta \psi < \pi - \Delta \psi - 2\beta$ (cases (a) and (b)), the body leaves the ground at an angle closer to vertical than at touchdown. Note that (2.26) is violated for part of the domain in (d).

values; they are indistinguishable from those obtained via the analytical expressions of [20].

We remark that, in view of energy conservation and the resulting constancy of v_n, (2.20) defines a one-dimensional map for the touchdown angle δ_n. One could specify
the system’s state in terms of any other convenient variable, such as the COM height at the apex, which was the choice adopted in [25]; cf. Figure 3(A) of that paper. We prefer to use the touchdown angle and retain the velocity as a second state variable so that, when \(d \neq 0 \), we may more conveniently couple in the attitude dynamics in terms of \(\theta \) and \(\dot{\theta} \), as was done for yawing motions in the LLS models of [20, 22]. Also, as demonstrated below, branches of periodic orbits and their domains of attraction are conveniently presented in terms of \(\delta_n \) (cf. Figure 8).

2.1.3. Periodic Gaits. The simplest sustained forward motions, in which the hopper maintains a constant average forward speed and lands with the same angle between the velocity vector and the horizontal datum on each step, are period-1 orbits given by \(v_{n+1} = v_n \) and \(\delta_{n+1} = \delta_n \). As we see from (2.20), the first condition is always satisfied, whereas the second condition holds if and only if \(\Delta \psi(v_n, \delta_n) = \pi - 2\beta \).

To verify this, we first check sufficiency. Let \(\Delta \psi(v_n, \delta_n) = \pi - 2\beta \). Then \(\sin(\beta + \Delta \psi) - \sin(\beta) = \sin(\pi - \beta) - \sin(\beta) = 0 \), and the map (2.20) reduces to

\[
P: \begin{bmatrix} v_{n+1} \\ \cos(\delta_{n+1}) \end{bmatrix} = \begin{bmatrix} v_n \\ \cos(\delta_n) \end{bmatrix}.
\]

At touchdown following a flight phase, \(\delta_n \in [0, \pi] \) (for both locomotion directions). In that range, \(\cos \delta_n \) is invertible; hence \(\delta_{n+1} = \delta_n \).

Now let \(\delta_{n+1} = \delta_n \). For sustained forward motion, \(\Delta \psi(v_n, \delta_n) \in [\pi/2 - \beta, \pi - \beta] \) and \(\delta_n^{LO} \in [0, \pi/2] \). Assume \(\Delta \psi(v_n, \delta_n) > \pi - 2\beta \). Then \(\delta_n^{LO} = \delta_n + \pi - \Delta \psi - 2\beta < \delta_n \) and \(\cos \delta_n^{LO} > \cos \delta_n \forall \delta_n \in [0, \pi/2] \). Also, \(\beta + \Delta \psi > \pi - \beta \) and \(\sin(\beta + \Delta \psi) > \sin(\pi - \beta) \forall \beta \in [0, \pi/2] \) and \(\forall \Delta \psi \in [\pi/2 - \beta, \pi - \beta] \Rightarrow \sin(\beta + \Delta \psi) > \sin(\beta) > 0 \forall \beta \in [0, \pi/2] \). Hence we conclude that

\[
\cos(\delta_{n+1}) > \left[1 - \frac{2g\eta}{v_n^2} (\sin(\beta + \Delta \psi) - \sin(\beta) \right]^{1/2} \cos(\delta_n) > \cos(\delta_n),
\]

which is a contradiction. A similar argument holds for \(\Delta \psi(v_n, \delta_n) < \pi - 2\beta \). Therefore, \(\Delta \psi(v_n, \delta_n) = \pi - 2\beta \) is also necessary. Hence \(\delta_n^{LO} = \delta_n \), and in the gravity-free approximation with \(d = 0 \), all one-periodic gaits are reflection-symmetric about midstance [53], a result that also holds when gravity is included, as shown in [39].

Note that, within limits to be determined below, \(v_{n+1} = v_n = \bar{v} \) can be chosen arbitrarily, and the expression \(\Delta \psi(\bar{v}, \delta_n) = \pi - 2\beta \) can be solved to obtain the fixed point that we denote by \(\bar{\delta} \). Here we appeal to the fact that a parabolic segment of the flight trajectory can always be matched to connect reflection-symmetric stance phases (i.e., those having \(\delta_n^{LO} = \delta_n \); see Figure 1), yielding a fixed point of \(P \). Thus, there is a one-parameter \((\bar{\delta}) \)-family of steady periodic gaits for each \(\beta \) and all other parameters fixed. Also see [20] and Figure 8.

We may linearize the general expression (2.20) at a fixed point of the map to obtain the Jacobian matrix

\[
DP|_{\delta_n=\bar{\delta}} = \begin{bmatrix} 1 + \frac{g\eta \cos(\beta \cot(\delta_n))}{\bar{v}^2} & 0 \\ -\left(1 + \frac{g\eta \cos(\beta \cot(\delta_n))}{\bar{v}^2} \right) & 1 - \left(1 + \frac{g\eta \cos(\beta \cot(\delta_n))}{\bar{v}^2} \right) \frac{\partial \Delta \psi}{\partial \delta_n} \right|_{\delta_n=\bar{\delta}} \end{bmatrix}
\]

the eigenvalues of which are \(\lambda_1 = 1 \) and

\[
\lambda_2 = 1 - \left(1 + \frac{g\eta \cos(\beta \cot(\delta_n))}{\bar{v}^2} \right) \frac{\partial \Delta \psi}{\partial \delta_n} \bigg|_{\delta_n=\bar{\delta}}.
\]
A SIMPLY STABILIZED RUNNING MODEL 531

The first eigenvalue, \(\lambda_1 \), lies on the unit circle, corresponding to conservation of energy, but \(|\lambda_2| \) may take values either greater than or less than 1. We require \(\delta \in (0, \beta) \) and \(\beta \in \left(0, \frac{\pi}{2} \right) \) for physically admissible gaits; thus the quantity in parentheses in (2.24) is strictly positive, and a key factor in determining \(\lambda_2 \) is the sign of \(\frac{\partial \Delta \psi}{\partial \delta_n} \). If \(\frac{\partial \Delta \psi}{\partial \delta_n} < 0 \), then \(|\lambda_2| > 1 \), and the fixed point is unstable; if \(\frac{\partial \Delta \psi}{\partial \delta_n} > 0 \), \(|\lambda_2| \) may be less than or greater than 1, and stability or instability may ensue [49] (see below).

As in [20], recognizing that energy is conserved, stability can only be partially asymptotic, since perturbations in the direction of the eigenvector of \(\lambda_1 \) neither grow nor decay. As noted at the close of section 2.1.1, both here and in [20], the physical mechanism for stabilization appears to be the trading of angular momentum from stride to stride. As noted by Ruina [27] (cf. [54]), such piecewise-holonomic systems can yield asymptotic stability much like nonholonomically constrained conservative systems [55].

2.1.4. Domain of Definition of \(P \). We must recall that the map was derived under the tacit assumption that unimpeded leg motion is possible over the entirety of the configuration space of the kinematic model. This is not true in general, as the toe must not be allowed to penetrate the ground. The touchdown angle \(\beta \) is held constant, and since the spring has a fixed length at rest \(\eta_0 \), the hip height at touchdown is also fixed: \(y_{TD} = \eta_0 \sin \beta \). For a gait to exist, this height must be reached during the flight phase, i.e., \(y_{G, \text{max}} \geq \eta_0 \sin \beta \); otherwise, the hopper will “stumble.” Integrating the ballistic equations (2.5), the time of flight to reach the apex is \(t_{\text{max}} = \frac{v_{LO}}{g} \sin \delta_{LO} \), and the maximum height is given by (2.5):

\[
y_{G, \text{max}} = y_G(t_{\text{max}}) = \eta_0 \sin (\beta + \Delta \psi) + \frac{(v_{LO} \sin \delta_{LO})^2}{2g}.
\]

Hence the map \(P \) is defined if and only if

\[
\sin^2 \delta_n^{LO} \geq \frac{2g \eta_0 (\sin \beta - \sin (\beta + \Delta \psi))}{v_n^2 + 2g \eta_0 (\sin \beta - \sin (\beta + \Delta \psi))},
\]

or, using (2.16),

\[
\sin^2 (\delta_n + \pi - \Delta \psi - 2\beta) \geq \frac{2g \eta_0 (\sin \beta - \sin (\beta + \Delta \psi))}{v_n^2 + 2g \eta_0 (\sin \beta - \sin (\beta + \Delta \psi))}.
\]

Inequality (2.26), which may be implicitly written in the form

\[
f(\bar{v}, \delta_n; \beta, \eta_0, g, m, V(\cdot)) \geq 0,
\]

specifies the domain of definition of \(P \) (admissible values of \((\bar{v}, \delta_n) \)) for each choice of physical parameters \((\beta, \eta_0, g, m) \) and spring potential \(V \). It appears difficult to give explicit bounds, but we observe that, when \(\max \Delta \psi (\bar{v}, \delta_n) \geq \pi - 2\beta \) and reflection-symmetric stance paths with \(\delta_n = \delta \) exist, we have \(\sin (\beta + \Delta \psi) = \sin (\pi - \beta) \), and the right-hand side of (2.26) vanishes. For physically relevant gaits, \(\delta \in [0, \beta] \) and \(\beta < \frac{\pi}{2} \); hence the left-hand side is strictly positive at fixed points unless \(\delta = 0 \). However, since the spring remains compressed during stance, providing a positive radial force, we see that \(\frac{\partial^2 f}{\partial x^2} > 0 \), which implies \(\frac{\partial^2 f}{\partial x^2} > 0 \), where \(\hat{x} \) and \(\hat{y} \) are the axes of a rotated

3The mechanism by which piecewise-holonomic systems can circumvent Liouville's theorem is detailed in [39].
orthogonal coordinate system that has its \(\hat{y} \)-axis aligned with the symmetry axis of the COM path. Hence the COM path is convex (cf. Figure 1), and \(\delta = 0 \) cannot be a fixed point. (The COM path need not be convex when gravity is included; indeed, one may find orbits with \(\delta_{nD} < 0 \).) The second column of Figure 3 shows the two sides of inequality (2.26).

We may therefore conclude via continuous dependence on initial data that the domain of definition of \(P \) contains open sets around each fixed point, and, if \(|\lambda_2| < 1 \) (resp., \(> 1 \)), local asymptotic stability (resp., instability) holds in the usual sense.

2.1.5. Bifurcations and Stability of Fixed Points of \(P \). To introduce the range of dynamical behaviors of \(P \) and better understand its domain of definition, we consider four representative cases depending on the maximum sweep angle \(\Delta \psi_{\text{max}} \):

(a) \(\Delta \psi_{\text{max}} < \frac{\pi}{2} - \beta \);
(b) \(\frac{\pi}{2} - \beta < \Delta \psi_{\text{max}} < \pi - 2\beta \);
(c) \(\pi - 2\beta < \Delta \psi_{\text{max}} \) and (2.26) is satisfied everywhere;
(d) \(\pi - 2\beta < \Delta \psi_{\text{max}} \) and (2.26) is not satisfied everywhere.

When \(\Delta \psi_{\text{max}} \leq \pi/2 - \beta \), the leg is vertical or directed forward at liftoff, so \(\delta_{n+1} > \delta_n \) and the direction of locomotion reverses once \(\delta_{n} > \pi/2 \), even though the map may be well defined; see Figures 3(a) and 6(a).

For \(\pi/2 - \beta < \Delta \psi_{\text{max}} < \pi/2 \beta \), a domain appears in which \(v_{nLO} = \psi_{nTD} + \Delta \psi_{\text{max}} > 0 \) and continuing forward motion is possible. However, the hopper still lifts off and touches down “more vertically” on each step until it eventually bounces backward in this case, too; see Figures 3(b) and 6(b). Indeed, from (2.16) we have \(\delta_{nLO} = \delta_n + \pi - \Delta \psi - 2\beta \), and by assumption (b) \(\delta_{nLO} > \delta_n \). From (2.17) we know that \(\cos(\delta_{n+1}) = \frac{v_{nLO}}{v_n} \cos(\delta_{nLO}) \). Now \(\delta_{nLO} \in \left(0, \frac{\pi}{2}\right)\), and the cosine function is monotonically decreasing. Since the hip position at liftoff is higher than at touchdown, the body has gained gravitational energy at the expense of kinetic energy. This means that \(v_{nLO} < v_n \), and therefore \(\cos \delta_{n+1} = \frac{v_{nLO}}{v_n} \cos \delta_{nLO} < \cos \delta_{nLO} < \cos \delta_n \). However, this implies that \(\delta_{n+1} > \delta_n \). Thus, starting with an initial angle \(\delta_n \), after the stance phase, \(\delta_{nLO} > \delta_n \), and after the flight phase, \(\delta_{n+1} > \delta_{nLO} > \delta_n \). Hence succeeding touchdown angles increase until progress is reversed; the dynamics is globally unstable, and the Poincaré map has no fixed points.

Cases (c) and (d) are of greater physical interest. In (c), inequality (2.26) is satisfied everywhere, so the domain of definition covers the interval \([\beta - \pi/2, \beta]\). Moreover, two fixed points exist, one of which may be stable, while the other (with higher values of \(\delta \)) is unstable. These fixed points appear in a saddle-node bifurcation \([49] \) at a critical speed \(v = v_{SN} \). Indeed, for the smaller \(\delta \) fixed point, \(\frac{\partial \Delta \psi}{\partial \delta_n} > 0 \) (see Figure 3(c)), \(\tilde{\delta} > 0 \Rightarrow \cot \tilde{\delta} > 0 \), and \(\lambda_2 = 1 - (1 + \frac{\alpha v_{nTD} \cos \beta \cot \delta}{v_n^2}) \frac{\partial \Delta \psi}{\partial \delta_n} \geq 1 - a \frac{\partial \Delta \psi}{\partial \delta_n} \). For the parameter values chosen here, \(a \approx 3 > 0 \); thus, for \(\frac{\partial \Delta \psi}{\partial \delta_n} \in (0, \frac{2}{3}) \), \(-1 < \lambda_2 < 1 \), and we have established asymptotic stability. More generally, since the term \(\frac{\partial \Delta \psi}{\partial \delta_n} = 0 \) when \(\Delta \psi_{\text{max}} = \pi - 2\beta \), by continuous dependence on parameters \(\frac{\partial \Delta \psi}{\partial \delta_n} \) is necessarily arbitrarily small for nearby parameter values, implying stability of the fixed point with smaller \(\delta \) in a neighborhood of the saddle-node bifurcation point. See Figures 3(c) and 6(c).

In case (d), \(\Delta \psi_{\text{max}} \geq \pi - 2\beta \), but the map \(P \) is not everywhere defined; Figure 3(d) shows that inequality (2.26) fails in the interior of \([\beta - \pi/2, \beta]\). A gap opens between the fixed points, and while a (stable) fixed point still exists to the left of the gap, many orbits, including that shown in Figure 6(d), enter the gap and “stumble.”

We now summarize key aspects of the behaviors described above. More detailed analyses for specific spring potentials are given in sections 3–4.
Saddle-Node Bifurcation. As noted above, a saddle-node bifurcation occurs between regimes (b) and (c). Specifically, for parameter values such that

\begin{equation}
\Delta \psi_{\text{max}}(\bar{v}_{SN}, \bar{\delta}_{SN}) = \pi - 2\beta \quad \text{and} \quad \left. \frac{\partial \Delta \psi}{\partial \delta_n} \right|_{(\bar{v}_{SN}, \bar{\delta}_{SN})} = 0,
\end{equation}

the fixed points coalesce, and \(\lambda_2 = 1 \). For fixed physical parameters and \(\bar{v} < \bar{v}_{SN} \), no fixed points exist, and periodic gaits are impossible; for a (possibly small) range of velocities \(v > \bar{v}_{SN} \), a stable fixed point exists, corresponding to symmetric one-periodic gaits. See Figures 7 and 11.

Gaps. Increases in \(\bar{v} \) and the consequent increases in the sweep angle \(\Delta \psi_{\text{max}} \) lead to a violation of (2.26), giving birth at a second critical speed \(\bar{v} = \bar{v}_{GP} \) to a gap—an interior domain in which the map is not defined. With further increases in \(\bar{v} \), the gap progressively expands to occupy a larger interval between the fixed points; see, e.g., Figure 8. Gaps may also appear in the range \(\delta_n < 0 \) for values of \(\bar{v} \) small enough that \(\Delta \psi_{\text{max}} < \pi - 2\beta \), although these are of less physical importance, since sustained gaits do not exist in this range (below \(\bar{v}_{SN} \)). See the discussion of section 3.1 and Figure 7.

Period Doubling. We recall expression (2.24) for the second eigenvalue of \(DP \):

\begin{equation}
\lambda_2 = 1 - \left(1 + \frac{g\eta_0 \cos \beta \cot \delta_n}{\bar{v}^2} \right) \left. \frac{\partial \Delta \psi}{\partial \delta_n} \right|_{\delta_n = \bar{\delta}}.
\end{equation}

The quantity in parentheses is strictly positive for \(\delta_n = \bar{\delta} \in (0, \beta) \) (symmetric periodic gaits), and \(\left. \frac{\partial \Delta \psi}{\partial \delta_n} \right|_{\delta_n = \bar{\delta}} \) is zero at the saddle-node bifurcation at \(\bar{v} = \bar{v}_{SN} \) and thereafter positive at the stable fixed point of \(P \). This suggests that, as the magnitude of \(\left. \frac{\partial \Delta \psi}{\partial \delta_n} \right|_{\delta_n = \bar{\delta}} \) increases with increasing \(\bar{v} \), \(\lambda_2 \) may pass through \(-1\). For general (differentiable) maps, the instability arising from crossing the unit circle at \(\lambda_2 = -1 \) represents a loss of stability via period-doubling and the birth of a period two orbit [49].

Explicit computations are awkward due to the difficulty of evaluating the sweep angle quadrature (2.10), but we may estimate \(\lambda_2 \) and hence obtain a sufficient condition for period-doubling to occur at high velocities \(\bar{v} \) by appealing to the limiting behavior of the \(\Delta \psi \) as \(\bar{v} \to \infty \). In the next section we estimate \(\Delta \psi(\bar{v}, \delta_n) \) and the fixed-point location \(\delta_n = \bar{\delta} \) in terms of the small parameter \(\frac{1}{2} \). This permits us to calculate \(\left. \frac{\partial \Delta \psi}{\partial \delta_n} \right|_{f.p.} \) in this limit, which in turn yields the estimate

\begin{equation}
\lambda_2 = -1 - \frac{g\eta_0 \cos \beta \left[4mg + V'(\eta_0 \sin \beta) \right]}{\bar{v} \sqrt{2mV(\eta_0 \sin \beta)}} + \mathcal{O} \left(\frac{1}{\bar{v}^2} \right).
\end{equation}

(Details of this calculation may be found in Appendices B and C of the original paper.)

Since \(V(\eta) \) is decreasing on the interval \((0, \eta_0)\) for physically reasonable spring laws, the condition \(\lambda_2 = -1 \) can be met. Indeed, to guarantee it, bearing in mind the fact that for “low” \(\bar{v} = \bar{v}_{SN} \), \(\lambda_2 = +1 \), it suffices to require \(|4mg + V'(\eta_0 \sin \beta)| > 0 \) so that \(\lambda_2 \) approaches \(-1\) from below as \(\bar{v} \to \infty \), having previously passed down through \(-1\). Thus one would expect period-doubling to occur for relatively soft springs or touchdown angles close to 90°, e.g., for \(k\eta_0(1 - \sin \beta) < 4mg \) in the case of the linear spring of section 3.1. However, we recall that the approximate computation of the sweep angle employed in this section is carried out under the assumption that spring forces dominate gravitational effects, whereas (2.29) indicates that they should be comparable for period-doubling. Evidently, the true behavior of \(\lambda_2 \) depends in a subtle manner on the precise spring law and the other physical parameters.
Nonetheless, numerical evidence suggests that period-doubling does occur for reasonable parameter values and, moreover, that it can occur at relatively low speeds. This observation corrects the misleading claim in [25]: “Bistable solutions do not exist as only symmetric contact phases may result in a periodic movement pattern (Schwind, 1998),” and “More recently, Schwind (1998) showed that for a running spring-mass system only symmetric stance phases with respect to the vertical axis might result in cyclic movement trajectories.”

Figure 9 shows an example of an attracting period-2 orbit born in such a bifurcation. Also see section 3.2. We remark that we have not found period-doubling for the Hooke spring with gravity in stance, since whenever we observe \(\lambda_2 \leq -1 \), the gap has already opened, which destroys any attracting behavior (see also Figure 3(A) of [25], where the gap opens at \(\alpha_0 = 68.70^\circ \), whereas the slope of the left fixed point becomes \(-1 \) at \(\alpha_0 = 68.85^\circ \)).

We note that this behavior is markedly different from the LLS dynamics discussed in [20, 22], in which no flight phase occurs, and the bound \(\frac{2\Delta \psi}{\delta_n} < 2 \) (see section 2.1.6) implies that period-doubling cannot occur.

2.1.6. The Limiting Case \(\bar{v} \to \infty \). It was noted in [20] that there is a critical value \(\bar{v} \) above which the touchdown kinetic energy exceeds the potential energy stored by a linear spring at zero length. When this happens, \(\Delta \psi(\bar{v}, \delta_n) \) no longer has a quadratic shape but approaches the straight line: \(\Delta \psi = \pi - 2(\beta - \delta) \) as \(\bar{v} \to \infty \). The unstable fixed point is lost, and the (previously stable) fixed point \(\delta \to 0^+ \), as shown in Figures 7 and 8. (As we shall see, this “change of type” does not occur for the air spring model, which has the physically desirable property that the spring force increases without bound as it is compressed to zero length.) However, for sufficiently large \(\bar{v} \) and any spring law having bounded energy at nonzero length, kinetic energy dominates both gravitational and elastic energy at finite compression, and the COM follows an almost-straight “ballistic” horizontal path.

In this limit, the quadrature integral of (2.10) can be asymptotically estimated, as shown in Appendix B of the original paper, leading to the following sweep angle expression:

\[
\Delta \psi(\bar{v}, \delta_n) = \left(\pi - 2\beta + 2\delta_n \right) - \frac{1}{\bar{v}} \sqrt{\frac{2V(\eta_0 \sin(\beta - \delta_n))}{m}} + O\left(\frac{1}{\bar{v}^2} \right).
\]

(2.30)

This allows us to determine the limiting trajectory in physical space. Clearly the stance phase limits to a horizontal motion over the distance \(2\eta_0 \cos \beta \) (the top of an inverted isosceles triangle). To compute the flight phase, we note that the fixed-point condition specifies \(\Delta \psi(\bar{v}, \delta) = \pi - 2\beta \). Calculating \(\delta \sim \frac{1}{\bar{v}} \) from the \(O(1) \) term of (2.30), we obtain an \(O(1) \) vertical component of liftoff velocity:

\[
v_{\text{LO, vert}} = \bar{v} \sin \delta \approx \sqrt{\frac{V(\eta_0 \sin \beta)}{2m}}; \quad v_{\text{LO, horiz}} = \bar{v} \cos \delta \approx \bar{v}.
\]

(2.31)

Hence the flight duration approaches a constant, and the flight distance grows linearly with \(\bar{v} \). The limiting behavior is well defined, but resolution of the flight phase requires an \(O(\frac{1}{\bar{v}}) \) calculation.

We note that (2.30) also shows that, as \(\bar{v} \to \infty \), the sweep angle approaches the straight line \(\Delta \psi = \left(\pi - 2\beta + 2\delta_n \right) \) from below, within its domain of definition; in fact, the \(O(\frac{1}{\bar{v}}) \) correction to \(\Delta \psi \) is the square root of the ratio of potential energy at midstance to kinetic energy at touchdown.

\[\text{The reader should note that the symmetry of orbits associated with period 1 return maps [51] has no bearing on the existence or properties of higher period discrete time behavior.}\]
2.2. Gravitational Effects During Stance. We have argued that, for sufficiently stiff leg springs, elastic force dominates gravitational force during the stance phase. In this situation, their inclusion represents a small perturbation of the idealized case studied above. Order-of-magnitude estimates indicate that, for the mass and leg length chosen here, a relatively stiff spring (e.g., \(k = 2000 \text{ N m}^{-1}, \gamma = 306 \)) is required to justify the neglect of \(g \). Typical apex heights are one to two orders of magnitude larger than \(\eta_0 \) in this case. However, even with springs as soft as \(k = 100 \text{ N m}^{-1} (\gamma = 15.3) \), chosen so that flight phase displacements are comparable to those in the stance phase, the hopper exhibits asymptotically stable gaits similar to ones of the gravity-free approximation. Figure 4 shows four examples of COM trajectories in physical space. Also see Figure 2.

2.3. On Pitching Dynamics: \(d \neq 0 \). We have found numerical evidence of periodic gaits even when the leg is not attached at the COM so that the (freely pivoted) body pitches in response to the combined moments due to gravity and the leg-spring force, according to the last equation of (2.4). Figure 5 shows examples of symmetric 1:1 motions in which the pitching angle is periodic with the same (least) period as the COM translation dynamics; note that in Figure 5(b) the pitch angle oscillates several times during each stance phase. We have also seen higher order resonances in which

\[^5\]The similarity between asymptotically stable gaits of the full SLIP and a SLIP model with gravity approximated by a central force is noted in [26].
the pitching pattern repeats once every \(n \) strides and quasi-periodic motions in which the pitch angle remains bounded but is not precisely locked to the stride dynamics.\(^6\) We defer a detailed analysis of these “acrobatic” motions, which appear to include partially asymptotically stable orbits having three eigenvalues of modulus 1 and one inside the unit circle, to a future publication.

3. Two Examples. In section 2.1.3, we discussed general conditions for stability, saddle-node bifurcations, period-doubling, and the appearance of a gap, and we classified the solutions in terms of \(\Delta v_{\text{max}} \), the maximum leg angle swept during stance, assuming only that the function \(\Delta \psi(v, \delta) \) has a unique maximum but without specifying any particular spring law. In the following section, we consider two specific and commonly used spring models: a linear Hooke’s law spring and an air spring that mimics the compressed air strut used in certain hopping robots. Throughout this section, we employ the approximation of section 2.1, ignoring gravity during stance.

3.1. The Hooke’s Law Spring. To further illustrate the four cases discussed in section 2.1 (Figure 3), we numerically evaluate the Poincaré map for a system with spring potential \(V(\eta) = \frac{k}{2}(\eta - \eta_0)^2 \) and parameters \(k = 100, m = 1, \eta_0 = 1.5, \beta = 1 \). As before, we employ increasing initial speeds \(v_0 = 1.75, 3.5, 5, 6 \), corresponding to \(\theta \) scales differ in the right-hand panels.

\(^6\)Compare to [39], where a stable period-1 motion is found for a SLIP model with the leg touchdown angle fixed in the body frame, rather than the inertial frame.
to cases (a) to (d), respectively; see Figure 6. A somewhat larger set of touchdown-
to-touchdown Poincaré maps P_2 is shown in Figure 7, where we plot the second
component $\delta_n \mapsto \delta_{n+1}$ implicit in (2.20).

Note that, as \bar{v} increases, the map first intersects the identity $\delta_{n+1} = \delta_n$ at
$\bar{v} = \bar{v}_{SN}$, and fixed points appear in a saddle-node bifurcation. We illustrate this in
Figure 8(a) in the form of bifurcation diagrams [49], plotting \bar{v} vs. \bar{v}. No qualitative
changes with β are apparent; this is a general feature that will be discussed in further
detail in section 4, where we also assess the effects of gravity in the stance phase. We
note that the domain of attraction of the stable fixed point opens and grows following
$\bar{v} = \bar{v}_{SN}$ until it is invaded by the gap; thereafter, it shrinks as \bar{v} increases. Also note
that the larger δ_n fixed point disappears at a finite speed $\bar{v} \approx 5.9$ due to the change
of type of $\Delta \psi$ and the stance map when $\delta \to \beta$, and kinetic energy at touchdown
exceeds the potential energy stored in the spring at zero length (cf. [20], and also see
Figure 7).

We have also seen gaps in the domain of definition of P_2 for low velocities $\bar{v} < \bar{v}_{SN}$
(before the saddle-node), but these are of less concern since there are no sustained
gaits in this range.

As noted in section 2.1.5, period-doubling bifurcations may occur as \bar{v} increases,
depending upon the spring potential and other parameters. Figure 9 shows an example
of a period-2 gait born in such a bifurcation for a linear spring system.

3.2. An Air Spring. The four cases discussed in section 2.1.5 can also be illus-
trated with an air spring model. As noted above, we adopt the potential
$c^2 (1 - \eta^2 - \eta_0^2)$.

We compute orbits and Poincaré maps for a system with the parameters $c = 23$, $m = 1$, $\eta_0 = 1.5$, $\beta = 1.25$ and increasing initial speeds $v_0 = 1.75, 3.5, 5.6$ shown as cases
(a) to (d), respectively, in Figure 10; these should be compared with Figure 6. The
corresponding Poincaré maps are shown in Figure 11 for comparison with Figure 7.
For small values of speed \bar{v}, the map has no fixed points or periodic orbits, and, as for
the linear spring, fixed points appear in a saddle-node bifurcation at a critical speed
$\bar{v} = \bar{v}_{SN}$. Figure 8(b) shows a bifurcation diagram for the air spring hopper. For this
spring law, which requires infinite energy and force for compression to zero length,
no change of type occurs, and the upper, unstable branch of fixed points continues to
arbitrarily high velocities.

3.2.1. Period-Doubling and Chaos. In section 2.1.5, we showed that period-
doubling may occur as $\bar{v} \to \infty$. On the other hand, there is also a critical speed \bar{v}_{GP}
above which the return map is not defined over the whole range $\delta_n \in [0, \beta]$. The
question then arises whether the gap always opens before period-doubling occurs or
whether period-2 and higher period orbits or even chaotic behavior is observed for
gap-free return maps. This is not only of theoretical importance; the onset of higher
period orbits and chaotic behavior for gap-free return maps would place additional
constraints on feedforward control policies that simply keep the leg touchdown angle
at $\beta = \text{const}$ [39].

To identify period-2^n orbits and chaos, we numerically approximate the Lyapunov
exponent [49] λ of the one-dimensional return map $P_2 : \delta_n \mapsto \delta_{n+1}(\delta_n)$, implicitly
defined by the second component of (2.20):

$$\lambda = \lim_{N \to \infty} \frac{1}{N} \sum_{i=0}^{N-1} \ln \left| \frac{dP_2}{d\delta_n}(\delta_i) \right| =: \lim_{N \to \infty} \lambda_N.$$
Fig. 6 Motions of the linear spring hopper in physical space (left column) and Poincaré maps (right column). Physical parameters k, m, η_0, β were taken as for Figure 3. Trajectories in physical space were computed from initial condition $\delta_0 = 0.1$, and initial speed was increased from $v_0 = 1.75$ to 3.5, 5, and 6 for cases (a) to (d), respectively. Touchdown height is shown by dotted horizontal lines. Poincaré maps were computed for the same speeds. Fixed points occur at intersections of the curves and the line $\delta_n = \delta_{n+1}$. Both the stance map P_{st} (solid) and the full map P (dotted) are shown. In (d), note the gap in which the full map is not defined.
Fig. 7 The Poincaré map P_2 for a linear spring hopper with $k = 10, m = 1, \tau_0 = 1.5, \beta = \pi/4$, and speeds \bar{v} ranging from 3.2 to 8. Note how the two fixed points appear in a saddle-node bifurcation, and a gap then opens as \bar{v} increases. For very high speeds, only one fixed point exists.

Fig. 8 Bifurcation diagrams for the linear spring hopper with $m = 1, k = 50, \tau_0 = 1.5$, and touchdown angle $\beta = 0.8$ in (a) and for the air spring hopper with $m = 1, c = 23, \tau_0 = 1.5$, and $\beta = 1.25$ in (b). Stable branches of fixed points are shown solid, unstable branches are dashed, and cross-hatching identifies the region in which the map is not defined. Saddle-node bifurcations occur at $\bar{v}_{SN} = 8.12$ in (a) and $\bar{v}_{SN} = 3.95$ in (b); below these no periodic gaits exist.

Fig. 9 A period-2 gait of the linear spring hopper with $k = 10, m = 1, \tau_0 = 1.5, \beta = \pi/4$, and $\bar{v} = 3.95$.
Fig. 10 Physical space motions (left column) and Poincaré maps (right column) for the air spring hopper. Parameter values were chosen as for Figure 3 except for the air spring stiffness $c = 23$ and leg length $\zeta_0 = 1.25$. The physical space trajectories were computed from initial condition $\delta_0 = 0.1$ and initial speeds from $v_0 = 1.75$ to 3.5, 5, and 6 for cases (a) to (d), respectively. Touchdown height is shown by dotted horizontal lines. The maps were computed for the same speeds and angles $\delta \in [0, \beta]$. Fixed points are identified with the intersection of the curves and the line $\delta_n = \delta_{n+1}$. Both the stance map P_{st} (solid) and the full map P (dash-dotted) are shown. The region in which the full map is not defined is apparent in (d).
Specifically, we set

$$\lambda \approx \begin{cases}
\lambda_K & \text{if } |\lambda_K - \lambda_{K-1}| < \varepsilon \text{ and } K < \bar{N}, \\
\lambda_{\bar{N}} & \text{else (with } \bar{N} = 10,000 \text{ and } \varepsilon = 10^{-6}),
\end{cases}$$

and take a range of leg touchdown speeds \(\bar{v} \in [1.515, 7.162]\); other parameters are \(\beta = 0.961, c/m = 0.01839, g = 9.81, \text{ and } \eta_0 = 0.173.\) In this case, the return map develops a gap at \(\bar{v}_{GP} = 1.7162.\)

However, it can be seen from Figure 12(a) that \(\lambda\) crosses to positive values at \(\bar{v}_{Chaos} = 1.713\) (magnified in Figure 12(b)). Similar behavior has been observed for the air spring potential with gravity in stance for parameter values \(\beta = 0.961, c/m = 0.03839, g = 9.81, \text{ and } \eta_0 = 0.17.\) Here, the Lyapunov exponent becomes positive at \(\bar{v}_{Chaos} = 1.6932,\) whereas the gap opens at \(\bar{v}_{GP} = 1.697.\) This is strong
Fig. 13 Bifurcating fixed points for $\beta = 0.961$, $c/m = 0.01839$, $g = 9.81$, and $\eta_0 = 0.173$. The region between the lower blue line and the upper dashed line is the basin of attraction.

numerical evidence for chaotic behavior in the corresponding SLIP. Chaotic behavior has not been observed for the linear spring.

In Figure 13, the corresponding bifurcating branches of fixed points are plotted as a function of the touchdown speed \bar{v} up to the gap at \bar{v}_{GP}. Bifurcations of period 8 and higher are omitted. The lower boundary of attraction is also shown; this deviates from $\delta_n = 0$ whenever $\delta_{n+1}(0) > \delta_{n+1}(\bar{\delta}_us)$, where $\bar{\delta}_us$ denotes the unstable fixed point of the period-1 bifurcation.

4. Nondimensional Parameter Studies. Parameters intrinsic to the model are the mass m of the body, the moment of inertia I, the gravitational acceleration g, the uncompressed leg length η_0, the leg touchdown angle β, the distance d from hip to the COM, and the stiffnesses k or c. These, together with initial conditions \bar{v}_0, δ_0, provide a variety of solutions with different stance and flight phases and basins of attraction. The seven physical parameters can be reduced to a minimal set of nondimensional parameters necessary to characterize the model. Rescaling time and lengths by defining $\tilde{t} = t / \eta_0$, $\tilde{\zeta} = \zeta / \eta_0$, $\tilde{d} = d / \bar{v}_0$, and $\tilde{\eta} = \eta / \eta_0$, we can rewrite the equations of motion (2.4) as

$$\begin{align*}
\tilde{\zeta}'' &= \psi^2 \tilde{\zeta} - \frac{g \bar{v}_0^2}{\eta_0} \cos \psi - \frac{V_\zeta(\eta_0 \tilde{\eta})}{m \eta_0 \tilde{\eta}} \tilde{\zeta} + \tilde{d} \cos(\psi + \theta), \\
\tilde{\zeta} \psi'' &= -2 \psi \tilde{\zeta}' + \frac{g \bar{v}_0^2}{\eta_0} \sin \psi + d \frac{V_\zeta(\eta_0 \tilde{\eta})}{m \eta_0 \tilde{\eta}} \sin(\psi + \theta), \\
\theta'' &= \frac{\bar{d} V_\zeta(\eta_0 \tilde{\eta}) \tilde{\zeta} t_0^2}{I \tilde{\eta}} \sin(\psi + \theta),
\end{align*}$$

(4.1)

where the differentiation $(\cdot)' \equiv \frac{d}{d\tilde{t}}$ is with respect to the nondimensional time \tilde{t}, and $V_\zeta(\tilde{\eta}) = V_\zeta(\eta) = \frac{\partial}{\partial \eta} V(\eta)$. It seems physically reasonable to define the characteristic time $t_0 = \frac{\bar{v}_0}{\eta_0}$, where \bar{v}_0 is a characteristic speed, such as the COM speed at touchdown, and η_0 is the uncompressed length of the leg spring.
4.1. Hooke’s Law Spring. If we assume a linear spring with \(V(\eta_0\tilde{\eta}) = \frac{k\eta_0^2}{2} (\tilde{\eta} - 1)^2 \)
and define the nondimensional parameter groups

\[
\tilde{k} \triangleq \frac{k\tilde{d}_0^2}{m}, \quad \tilde{g} \triangleq \frac{g\tilde{t}_0}{\eta_0}, \quad \tilde{I} \triangleq \frac{I}{m\eta_0^2},
\]

the equations of motion, expressed in nondimensional coordinates, become

\[
\ddot{\zeta}'' = \psi^2 \dot{\zeta} - \tilde{g} \cos \psi - \hat{k} \left(1 - \frac{1}{\eta}\right) (-\ddot{\zeta} + \ddot{d} \cos(\psi + \theta)),
\]

\[
\ddot{\zeta} \psi'' = -2\psi \dot{\zeta} \dot{\psi} + \ddot{\tilde{g}} \psi + \tilde{k} \ddot{d} \left(1 - \frac{1}{\eta}\right) \sin(\psi + \theta),
\]

\[
\theta'' = \frac{\tilde{k} \ddot{d} \ddot{\zeta}}{I} \left(1 - \frac{1}{\eta}\right) \sin(\psi + \theta).
\]

Here the parameter \(\tilde{k} = \frac{k\tilde{d}_0^2}{m v_0^2} = \frac{E_{snc}}{E_{kin}} \) expresses the ratio between the potential energy storable by the spring at maximum compression (i.e., to zero length) and the touchdown kinetic energy, whereas \(\tilde{g} = \frac{g\tilde{t}_0}{v_0^2} \), an inverse Froude number,\(^7\) expresses the ratio of gravitational energy to kinetic energy. Note also that the ratio \(\tilde{k} \approx \frac{k\eta_0}{mg} \approx \gamma \) is fixed for a given physical system and is independent of initial conditions and, in particular, of the characteristic speed: \(\gamma \) is the relative stiffness parameter \(k_{rel} \) introduced in [9, 47]\(^8\). Seven physical parameters \(m, I, d, \eta_0, \beta, g, k \) have been reduced to five: \(I, d, \beta, \tilde{g}, \tilde{k} \). In the special case of the hip attached at the COM, \(\tilde{d} = 0, \theta = \) const, and only three parameters play a role: \(\beta, \tilde{g}, \tilde{k} \). This facilitates a parametric analysis of the system. Since \(\beta \) does not appear to change the qualitative behavior of the solutions of (4.3), we represent the “sheets” of periodic solutions in \((\tilde{k}, \tilde{g}, \delta)\)-space.

Since we wish to assess the influence of gravity via \(\tilde{g} \), here and for the air spring calculations below, we include gravity in the stance phase and make our fixed-point computations numerically.

Figures 14(a)–(b) show how the stable and unstable branches of the fixed point \(\delta_n = \delta \) over \((\tilde{k}, \tilde{g})\)-space change as \(\beta \) varies. The general shape of the surface of equilibria is preserved, although the influence of \(\tilde{g} \) on the saddle-node location \(\tilde{k}_{SN} \) lessens as \(\beta \) decreases and \(\tilde{k}_{SN} \) itself decreases, corresponding to higher velocities. Also, for fixed \(\beta \), increases in \(\tilde{g} \) cause the lower (stable) branch to shrink until it disappears so that when gravity plays a dominant role (low speed and/or long leg), there is only one unstable fixed point; cf. Figure 14(c) with \(\tilde{g} \approx 1 \), and see [58, Fig. 7]. It can also happen, as noted in section 3.1 (Figure 8(a)), that the upper branch terminates and only one (potentially) stable fixed point exists, e.g., near \(\beta = 1.25, \tilde{k} \approx 1, \tilde{g} \approx 0.01 \) in Figure 14(c). Increasing \(\beta \) has the effect of expanding the domain of attraction both in the \(\tilde{k} \) and \(\tilde{g} \) directions. This suggests a choice of high ratios \(\gamma \) (e.g., relatively hard springs) and high values of \(\beta \) in order to maximize the domains of attraction of the stable fixed points.

The two-dimensional sheets in \((\tilde{k}, \tilde{g}, \beta)\) parameter space on which saddle-node, period-doubling, and other codimension-one bifurcations occur may be translated into dimensional parameters via (4.2), allowing one to derive scaling behaviors. For example, if \((\tilde{k}_{SN}, \tilde{g}_{SN}, \beta_{SN})\) is a saddle-node bifurcation point and \(m, g, \eta_0, \) and \(\beta \)

\(^7\)In hydrodynamics, where it originated, the Froude number is defined as \(v/\sqrt{g} \) [56], but here we follow the biomechanical convention [1].
are fixed, we have

\[\tilde{v}_{SN} = \eta_0 \sqrt{\frac{k}{mk_{SN}}} \propto \sqrt{k}. \]

(4.4)

See [22] for extensive analyses of this type for the LLS model.

4.2. Air Spring. If we assume an air spring with \(V(\eta_0 \tilde{\eta}) = \frac{c}{2v_0} (\frac{1}{\eta_0^4} - 1) \) and define

the nondimensional parameter groups

\[\tilde{c} \triangleq \frac{ct^2}{m\eta_0^4}, \quad \tilde{\eta} \triangleq \frac{gt^2}{\eta_0}, \quad \text{and} \quad \tilde{I} \triangleq \frac{I}{m\eta_0^2}, \]

(4.5)

the equations of motion, expressed in nondimensional coordinates, become

\[\tilde{\zeta}'' = \psi^2 \tilde{\zeta} + \tilde{\eta} \cos \psi + \tilde{c} \tilde{\eta}^4 (\tilde{\zeta} + \tilde{d} \cos (\psi + \theta)), \]

\[\tilde{\zeta} \psi'' = -2\psi \tilde{\zeta}^2 + \tilde{\eta} \sin \psi - \frac{\tilde{c}}{\tilde{\eta}^4} \tilde{d} \sin (\psi + \theta), \]

\[\theta'' = -\frac{\tilde{c} \tilde{d} \tilde{\zeta}}{\tilde{\eta}^2} \sin (\psi + \theta). \]

(4.6)
Fig. 15 Bifurcation diagrams for the air spring in nondimensional \((\tilde{c}, \tilde{g}, \delta)\)-parameter space. Upper panels show the cases \(\beta = 1.25\) (a) and \(\beta = 1\) (b), respectively; lower panels show three bifurcation diagrams (cross sections of (a)) for \(\beta = 1.25\) (c) and a single bifurcation diagram for \(\beta = 1.25\) and \(\tilde{g} = 0.5\) (d). Unstable branches are shown dashed, stable branches are shown solid, period-doubling bifurcation points are indicated by triangles, and boundaries of the gap are indicated by thick black curves.

Note that with these choices, \(\tilde{c} = \frac{c}{m \eta_0 v_0^2} = \frac{E_{\text{pr}}}{E_{\text{kin}}}\) expresses the ratio between the potential energy stored at infinite spring length and the kinetic energy, whereas \(\tilde{g} = \frac{g \eta_0}{v_0^2}\) is again the inverse Froude number. Note also that the ratio \(\frac{\tilde{c}}{\tilde{g}} = \frac{c}{m \eta_0 \Delta^2} \beta \gamma\) is fixed for a given physical system and, like \(\gamma\) above, is independent of initial conditions and of the characteristic speed. Again, seven physical parameters \(m, I, d, \eta_0, \beta, g, c\) have been reduced to five: \(I, d, \beta, \tilde{g}, \tilde{c}\). In the special case of the hip attached at the COM, \(\tilde{d} = 0, \theta = \text{const}\), and only three parameters play a role: \(\beta, \tilde{g}, \tilde{c}\). The resulting surface plots are generally similar to those of Figure 14 for the linear spring, but they reveal that stable branches persist for large \(\tilde{g}\) and that period-doubling occurs “earlier” (for higher \(\tilde{c}\) and hence lower \(\tilde{\gamma}\)); see Figure 15.

5. Conclusions. In this paper, we studied the SLIP model of a hopping rigid body in the vertical plane. Exploring suitable limiting cases, we proved the existence of asymptotically stable periodic gaits for a fixed leg-angle (feedforward) touchdown protocol by studying the touchdown-to-touchdown Poincaré map under the approx-
imation that gravity is negligible during stance. Numerical simulations including gravitational effects corroborated this result, revealing regions in the parameter and phase spaces where stable gaits exist. We considered two representative spring laws: a linear spring and a hardening air spring representative of pneumatically sprung legs used in hopping machines [44], and we studied bifurcations from the branch of stable gaits, the domains of attraction of those gaits, and the domains of definition of the Poincaré map, picking parameter values appropriate to illustrating key behaviors rather than for comparison with specific animals or machines. Throughout we focused on the classical SLIP, but our formulation includes full rigid body dynamics in the sagittal plane, and we displayed some coupled translation and pitching motions. Future work will include a broader analysis of these aspects.

As noted in the introduction, our work complements the study of [25], which addresses parameter ranges relevant to human running. Using direct numerical solution of the point mass SLIP equations (equivalent to the first two of (2.6)), [25] identifies parameters for which potentially stable period-1 gaits exist and shows that models with masses, leg lengths, and stiffnesses estimated from human data fall within a narrow range [25, Figure 2(A)]. A set of apex height Poincaré maps and some COM trajectories are also shown [25, Figures 3(A)–(B)]. It is noted that there is a minimum speed below which periodic gaits do not exist, that “larger variations in leg stiffness and angle of attack are tolerated [for] increasing speed,” and that “higher...velocities require either higher leg stiffness assuming constant angle of attack, or flatter angles of attack for constant leg stiffness” [25, Figures 2(B)–(C)].

We believe that the present analytical work, with the associated limiting integrable cases, illuminates those observations. Specifically, our bifurcation studies reveal limits to stable parameter ranges bounded by saddle-node and period-doubling bifurcations, the former being responsible for [25]'s minimum speed requirement; our nondimensional analysis shows clear speed/stiffness relations (e.g., (4.4) for the linear spring) and reveals the relative importance of elastic and gravitational effects; and our study of gaps in the domain of definition of P ([25]'s apex/touchdown height constraint) shows that, while stable fixed points or higher period orbits continue to high velocity, their domains of attraction become extremely small. This shows that, with increasing speed, the system is less tolerant to dynamical perturbations, even though parameter variations are less restricted, as observed in [25] (see also Figure 2(b) in [36]). However, the bifurcation diagrams of Figures 8 and 14 show that, if the nondimensional parameters are maintained in a “good” location (e.g., between the saddle-node and gap of Figure 8) as \bar{v} changes, by suitable tuning of stiffness or touchdown angle, then robust stability can be achieved with simple fixed-leg reset control.

The analytical study of the point mass SLIP [26], published after the original version of the present paper appeared and using a different approximation, is also relevant. In this paper Geyer, Seyfarth, and Blickhan first obtain an integrable system by the equivalent of setting $\cos \psi \approx 1$ in (2.3) to decouple the rotational degree of freedom ψ so that angular momentum $m\zeta^2\dot{\psi}$ is conserved and the two-degree-of-freedom system is integrable by quadratures, as in the present paper. However, while neglecting the effect of gravitational moment on angular momentum, they include a constant component of gravity in the radial direction, effectively setting $g \cos \psi \approx g$ in the first equation of (2.6). They then expand the effective potential to second order in the spring displacement $(\zeta - \eta_0)/\eta_0$ and approximate the quadrature in terms of elementary trigonometrical functions. They express the resulting dynamics as an
apex-to-apex Poincaré map and find pairs of stable and unstable equilibria emerging in a saddle-node bifurcation much as in the present paper. Using the analytical expression for the approximate Poincaré map, a relation between the dimensionless spring stiffness γ and the touchdown angle β for asymptotically stable gaits is derived which agrees in a certain limit with the empirically found γ-β relation of [25].

Finally, we note two recent studies of the three-dimensional point mass SLIP. Seipel and Holmes [57, 58] use the gravity-free stance approximation, which implies that the mass center remains within a plane spanned by the touchdown velocity and leg placement vectors during stance, and allows them to adapt the present analysis. They show that periodic gaits are all unstable to toppling out of the sagittal plane, but that orbits can easily be stabilized by feedback adjustments of leg angle based on mass center velocity at touchdown. Carver [59] describes control policies in which leg stiffness and touchdown angle are set in response to mass center position and velocity during flight, and shows that single-step deadbeat control is possible to stabilize some, but not all, tasks. Seipel and Holmes are currently studying the three-dimensional problem with multiple leg support during stance, and find that passive stability with fixed leg reset is possible with double (kangaroo hopping) and triple (insect tripod) support patterns. We intend to build on these results, using the methods of the present paper, to develop analytically tractable models of RHex and of insects.

REFERENCES

A SIMPLY STABILIZED RUNNING MODEL